Search results for "TRNA Methyltransferases"

showing 10 items of 11 documents

Mechanism and biological role of Dnmt2 in Nucleic Acid Methylation

2016

ABSTRACT A group of homologous nucleic acid modification enzymes called Dnmt2, Trdmt1, Pmt1, DnmA, and Ehmet in different model organisms catalyze the transfer of a methyl group from the cofactor S-adenosyl-methionine (SAM) to the carbon-5 of cytosine residues. Originally considered as DNA MTases, these enzymes were shown to be tRNA methyltransferases about a decade ago. Between the presumed involvement in DNA modification-related epigenetics, and the recent foray into the RNA modification field, significant progress has characterized Dnmt2-related research. Here, we review this progress in its diverse facets including molecular evolution, structural biology, biochemistry, chemical biology,…

0301 basic medicineRetroelementsRNA methylationChemical biologyReviewBiologyMethylationCatalysisEpigenesis GeneticSubstrate Specificity03 medical and health scienceschemistry.chemical_compoundStructure-Activity RelationshipNucleic AcidsAnimalsHumansEpigeneticsDNA (Cytosine-5-)-MethyltransferasesGene SilencingMolecular BiologytRNAPhylogenyGeneticsNucleic acid methylationDNA methylationBinding SitesepigeneticsCell BiologyTRNA Methyltransferasesmethylcytidine030104 developmental biologyCell Transformation NeoplasticBiochemistrychemistryStructural biologyGene Expression RegulationNucleic acidRNA methylationDNAProtein BindingRNA Biology
researchProduct

Molecular epidemiology of Acinetobacter baumannii in Iran: endemic and epidemic spread of multiresistant isolates

2014

Objectives We examined the molecular epidemiology of Acinetobacter baumannii clinical isolates from two cities (Tehran and Tabriz) of Iran. Methods DiversiLab repetitive extragenic palindromic PCR (rep-PCR), multilocus sequence typing and sequence group multiplex PCR were performed. The presence of resistance mechanisms including metallo-β-lactamases, extended-spectrum β-lactamases, OXA carbapenemases, aminoglycoside-modifying enzymes and RNA methylases was also investigated. Results DiversiLab rep-PCR identified 11 clusters and 11 singleton isolates. Twelve sequence types (STs), including six novel types, were identified. Sequence groups (SGs) 1-3 as well as five additional banding pattern…

Acinetobacter baumanniiMicrobiology (medical)Settore MED/07 - Microbiologia E Microbiologia ClinicaGenotypeIranBiologySettore MED/42 - Igiene Generale E ApplicataMicrobiologySequence-tagged siteDrug Resistance Multiple BacterialMultiplex polymerase chain reactionCluster AnalysisHumansPharmacology (medical)CitiesPharmacologyGeneticsMolecular EpidemiologyMolecular epidemiologyGenetic VariationOutbreakbiology.organism_classificationTRNA MethyltransferasesAcinetobacter baumanniiMolecular TypingMultiple drug resistanceAcinetobacter baumannii MDR Iran molecular epidemiologyInfectious DiseasesMultilocus sequence typingAcinetobacter InfectionsJournal of Antimicrobial Chemotherapy
researchProduct

Identification of modifications in microbial, native tRNA that suppress immunostimulatory activity

2012

2′-O-methylation of guanosine 18 is a naturally occurring tRNA modification that can suppress immune TLR7 responses.

ImmunologyMutantfungiBrief Definitive ReportRNAfood and beveragesvirus diseasesContext (language use)Biologybiochemical phenomena metabolism and nutritionmedicine.disease_causeTRNA MethyltransferasesTransplantationchemistry.chemical_compoundBiochemistrychemistryTransfer RNAmedicineImmunology and AllergyEscherichia coliDNAThe Journal of Experimental Medicine
researchProduct

RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis.

2012

The function of cytosine-C5 methylation, a widespread modification of tRNAs, has remained obscure, particularly in mammals. We have now developed a mouse strain defective in cytosine-C5 tRNA methylation, by disrupting both the Dnmt2 and the NSun2 tRNA methyltransferases. Although the lack of either enzyme alone has no detectable effects on mouse viability, double mutants showed a synthetic lethal interaction, with an underdeveloped phenotype and impaired cellular differentiation. tRNA methylation analysis of the double-knockout mice demonstrated complementary target-site specificities for Dnmt2 and NSun2 and a complete loss of cytosine-C5 tRNA methylation. Steady-state levels of unmethylate…

MaleRNA StabilityMutantBiologyNSun2MethylationCytosineMiceRNA TransferStructural BiologyProtein biosynthesism5CAnimalsDNA (Cytosine-5-)-MethyltransferasesMolecular BiologytRNACells CulturedMice KnockoutTRNA methylationRNACell DifferentiationMethylationMethyltransferasesTRNA MethyltransferasesBiochemistryProtein BiosynthesisTransfer RNADNA methylationDnmt2FemaleGene DeletionNature structuralmolecular biology
researchProduct

A New Nuclear Function of the Entamoeba histolytica Glycolytic Enzyme Enolase: The Metabolic Regulation of Cytosine-5 Methyltransferase 2 (Dnmt2) Act…

2009

Cytosine-5 methyltransferases of the Dnmt2 family function as DNA and tRNA methyltransferases. Insight into the role and biological significance of Dnmt2 is greatly hampered by a lack of knowledge about its protein interactions. In this report, we address the subject of protein interaction by identifying enolase through a yeast two-hybrid screen as a Dnmt2-binding protein. Enolase, which is known to catalyze the conversion of 2-phosphoglycerate (2-PG) to phosphoenolpyruvate (PEP), was shown to have both a cytoplasmatic and a nuclear localization in the parasite Entamoeba histolytica. We discovered that enolase acts as a Dnmt2 inhibitor. This unexpected inhibitory activity was antagonized by…

MethyltransferaseQH301-705.5ImmunologyEnolaseProtozoan ProteinsPolymerase Chain ReactionMicrobiologyEntamoeba histolyticaTwo-Hybrid System TechniquesGenetics and Genomics/EpigeneticsVirologyGeneticsImmunoprecipitationDNA (Cytosine-5-)-MethyltransferasesMicrobiology/ParasitologyBiology (General)Molecular BiologyMolecular Biology/DNA MethylationCell Nucleuschemistry.chemical_classificationbiologyEntamoeba histolyticaInfectious Diseases/Protozoal InfectionsMethylationRC581-607biology.organism_classificationTRNA MethyltransferasesEnolase 2EnzymechemistryBiochemistryPhosphopyruvate HydrataseSpectrometry Mass Matrix-Assisted Laser Desorption-IonizationParasitologyImmunologic diseases. AllergyNuclear localization sequenceResearch ArticlePLoS Pathogens
researchProduct

FICC-Seq: a method for enzyme-specified profiling of methyl-5-uridine in cellular RNA.

2019

AbstractMethyl-5-uridine (m5U) is one the most abundant non-canonical bases present in cellular RNA, and in yeast is found at position U54 of tRNAs where modification is catalysed by the methyltransferase Trm2. Although the mammalian enzymes that catalyse m5U formation are yet to be identified via experimental evidence, based on sequence homology to Trm2, two candidates currently exist, TRMT2A and TRMT2B. Here we developed a genome-wide single-nucleotide resolution mapping method, Fluorouracil-Induced-Catalytic-Crosslinking-Sequencing (FICC-Seq), in order to identify the relevant enzymatic targets. We demonstrate that TRMT2A is responsible for the majority of m5U present in human RNA, and t…

MethyltransferaseSaccharomyces cerevisiae ProteinsCell SurvivalSaccharomyces cerevisiaeBiology03 medical and health scienceschemistry.chemical_compound0302 clinical medicineRNA TransferYeastsGeneticsHumansNucleotideUridine030304 developmental biologychemistry.chemical_classification0303 health sciencestRNA MethyltransferasesDeoxyribonucleasesHEK 293 cellsRNAHigh-Throughput Nucleotide SequencingYeastUridineEnzymeHEK293 CellsBiochemistrychemistry030220 oncology & carcinogenesisTransfer RNARNAMethods OnlineFluorouracilNucleic acids research
researchProduct

RNA nucleotide methylation

2011

Methylation of RNA occurs at a variety of atoms, nucleotides, sequences and tertiary structures. Strongly related to other posttranscriptional modifications, methylation of different RNA species includes tRNA, rRNA, mRNA, tmRNA, snRNA, snoRNA, miRNA, and viral RNA. Different catalytic strategies are employed for RNA methylation by a variety of RNA-methyltransferases which fall into four superfamilies. This review outlines the different functions of methyl groups in RNA, including biophysical, biochemical and metabolic stabilization of RNA, quality control, resistance to antibiotics, mRNA reading frame maintenance, deciphering of normal and altered genetic code, selenocysteine incorporation,…

Models MolecularRNA methylationRNA-dependent RNA polymeraseRNA ArchaealBiologyMethylationBiochemistryRNA TransferDrug Resistance BacterialRNA Processing Post-TranscriptionalMolecular BiologyGeneticstRNA MethyltransferasesBinding SitesIntronRNANon-coding RNARNA BacterialRNA silencingRNA RibosomalRNA editingProtein BiosynthesisBiocatalysisNucleic Acid ConformationRNARNA ViralSmall nuclear RNAWIREs RNA
researchProduct

The Dnmt2 RNA methyltransferase homolog of Geobacter sulfurreducens specifically methylates tRNA-Glu

2014

Dnmt2 enzymes are conserved in eukaryotes, where they methylate C38 of tRNA-Asp with high activity. Here, the activity of one of the very few prokaryotic Dnmt2 homologs from Geobacter species (GsDnmt2) was investigated. GsDnmt2 was observed to methylate tRNA-Asp from flies and mice. Unexpectedly, it had only a weak activity toward its matching Geobacter tRNA-Asp, but methylated Geobacter tRNA-Glu with good activity. In agreement with this result, we show that tRNA-Glu is methylated in Geobacter while the methylation is absent in tRNA-Asp. The activities of Dnmt2 enzymes from Homo sapiens, Drosophila melanogaster, Schizosaccharomyces pombe and Dictyostelium discoideum for methylation of the …

RNA Transfer AsptRNA MethyltransferasesMethyltransferasebiologyNucleic Acid EnzymesRNAMethylationbiology.organism_classificationMethylationDictyostelium discoideumRNA Transfer GluSubstrate SpecificityMiceBiochemistryBacterial ProteinsTransfer RNASchizosaccharomyces pombeGeneticsAnimalsHumansNucleic Acid ConformationGeobacterGeobacter sulfurreducensGeobacterNucleic Acids Research
researchProduct

Expanding the chemical scope of RNA:methyltransferases to site-specific alkynylation of RNA for click labeling.

2010

This work identifies the combination of enzymatic transfer and click labeling as an efficient method for the site-specific tagging of RNA molecules for biophysical studies. A double-activated analog of the ubiquitous co-substrate S-adenosyl-l-methionine was employed to enzymatically transfer a five carbon chain containing a terminal alkynyl moiety onto RNA. The tRNA:methyltransferase Trm1 transferred the extended alkynyl moiety to its natural target, the N2 of guanosine 26 in tRNA(Phe). LC/MS and LC/MS/MS techniques were used to detect and characterize the modified nucleoside as well as its cycloaddition product with a fluorescent azide. The latter resulted from a labeling reaction via Cu(I…

S-AdenosylmethioninetRNA MethyltransferasesBase SequenceStereochemistryMolecular Sequence DataGuanosineRNAFluorescence correlation spectroscopyBiologyTRNA Methyltransferaseschemistry.chemical_compoundRNA Transfer PheSpectrometry FluorescencechemistryBiochemistryAlkynesTransfer RNASynthetic Biology and ChemistryGeneticsClick chemistryMoietyClick ChemistryAzideOrganic ChemicalsFluorescent DyesNucleic acids research
researchProduct

Functional characterization of the human tRNA methyltransferases TRMT10A and TRMT10B

2020

Abstract The TRM10 family of methyltransferases is responsible for the N1-methylation of purines at position 9 of tRNAs in Archaea and Eukarya. The human genome encodes three TRM10-type enzymes, of which only the mitochondrial TRMT10C was previously characterized in detail, whereas the functional significance of the two presumably nuclear enzymes TRMT10A and TRMT10B remained unexplained. Here we show that TRMT10A is m1G9-specific and methylates a subset of nuclear-encoded tRNAs, whilst TRMT10B is the first m1A9-specific tRNA methyltransferase found in eukaryotes and is responsible for the modification of a single nuclear-encoded tRNA. Furthermore, we show that the lack of G9 methylation cau…

tRNA MethyltransferasesMethyltransferaseBase SequenceAcademicSubjects/SCI00010Nucleic Acid EnzymesTRNA MethyltransferaseRNAMethylationMethyltransferasesMitochondrionBiologyMethylationTRNA MethyltransferasesCell LineBiochemistryRNA TransferPurinesProtein BiosynthesisTransfer RNAProtein biosynthesisGeneticsHumans
researchProduct